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ABSTRACT

Companies in regulated industries have more onerous requirements to control their decisions and
activities through risk management procedures. Because of FDA regulations, companies can spend
dozens of pages writing detailed procedures on how to classify supplier risk levels. However, this
can work against the organization by creating an “Audit trap,” where a company creates such
specific procedures that are nearly impossible to follow. This will create low-hanging fruit for an
auditor, and may cause the company to lose its certification—or, in extreme cases, even get shut
down by the FDA.

Academia has until now focused on non-transparent Artificial Neural Networks (ANNs) and
binary-classifying Support Vector Machines (SVMs), both of which are inappropriate for use in
companies with a Quality Management System (QMS); the lack of transparency will be a red flag
for auditors, and the binary classification is insufficient for QA departments who need more
granularity in their risk classes. This reveals two gaps in the existing literature: A lack of papers on
explainable algorithms in regulated manufacturing, as well as a lack of broad-scope treatment of
machine learning applications.

The methodology proposed in this paper fills those gaps: It involves training and evaluating a KNN
model to classify supplier risk as low, medium, or high, given variables from both quality and
supply chain, and ensuring transparency and explainability in anticipation of QMS audits. This
model, applied in various synthetic datasets, serves as a proof-of-concept for industry.
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Introduction

In regulated industries, such as medical device manufacturing, ensuring product quality and
regulatory compliance is paramount. The present study proposes a novel approach to identify the
appropriate risk level of suppliers in regulated manufacturing companies through a K-Nearest
Neighbors (KNN) machine learning model. The proposed approach involves training and
evaluating a KNN model to classify supplier risk as low, medium, and high given variables from
both quality and supply chain, and ensuring transparency and explainability in anticipation of
QMS audits.

RQ1: How can regulated manufacturing industries utilize machine learning models to classify
supplier risk levels?

RQ2: What machine learning models are most appropriate for regulated manufacturing
industries?

Background and significance
Background

Regulated industries are generally cautious and slow-moving entities, as they must satisfy
standards and compliance regulations . The main way to fulfill these requirements is
implementing and maintaining a "Standardized management systems such as QMS, EMS, [and]
H&SMS"[?] These acronyms refer to systems centering around risk management in the areas of
quality, environment, and health and safety, respectively. These systems mitigate risk by defining
both the probability and severity of the potential risk, as well as defining justifications for how the
risk is sufficiently controlled.

Taking as an example the medical device industry, risk management has been increasingly
prominent in the guidelines and requirements from the US Food and Drug Administration (FDA),
as illustrated in their seminal 2021 flowchart:
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Fig. 1: The risk evaluation process. Image source: U.S. FDA Center for Devices and Radiological Health, 2021
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One way that medical device companies prove risk mitigation is through risk management
documents. The most common document is a Failure Mode and Effect Analysis (FMEA). The
Institute for Healthcare Improvement clarifies the purpose of an FMEA: “Failure Modes and
Effects Analysis (FMEA) is a tool for conducting a systematic, proactive analysis of a process
in which harm may occur. In an FMEA, a team representing all areas of the process under
review convenes to predict and record where, how, and to what extent the system might fail”
81 FMEAs usually list components or functional elements of a device, what could go wrong
with each, what the effects would be, and how the risk of that outcome is mitigated.

Significance

This, however, is insufficient for supplier evaluation. Basing supplier risk exclusively on the
components that they manufacture or provide is only one piece of the puzzle. There is a myriad of
factors at play, and any risk management solution must take into account as many of these factors
as possible: Financial stability, quality of the products, on-time deliveries, and response time all
matter. To put forth a hypothesis that if a company’s part is determined in the engineers’ FMEA
documents to be a low risk, that an unprofitable supplier who consistently ships nonconforming
parts late and doesn’t respond to meeting requests is also subsequently “proven” to be a low risk
is simply untenable. Taking into account the considerable risks to patient safety, there is a need
for a much more rigorous risk classification method.

Where FMEAs fall short, algorithmic supplier analysis can supplement and fill the gaps in risk
management. This benefits both academia and industry. Creating and evaluating a machine
learning model is a typical exercise in the scholarly conversation, as evidenced in the Literature
Review section below. The figure above demonstrates that risk management is fundamental to
business success in medical device manufacturing, so taking advantage of that need is paramount.
Sometimes, however, a gap in the academic landscape simultaneously presents a somewhat-rare
opportunity to satisfy an industry need as well. In service of this goal, this paper presents a novel
methodology to train a machine learning model for the regulated manufacturing industries—
robust enough for engineering use in actual departments, but transparent enough to pass QMS
audits.

Literature review

Academia has until now focused on non-transparent neural networks and binary-classifying
Support Vector Machines (SVMs), both of which are inappropriate for use in companies with a
Quality Management System (QMS); the lack of transparency will be a red flag for auditors, and
the binary classification is insufficient for QA departments who need more granularity in their
risk classes. This reveals two gaps in the existing literature: A lack of papers on explainable
algorithms in regulated manufacturing, as well as a lack of broad-scope treatment of machine
learning applications.

Machine learning algorithms for risk mitigation

The first goal is to place machine learning algorithms in a manufacturing context. A survey article
by Ademujimi et al.,! describes various machine learning algorithms used in manufacturing from
2007 to 2017. This 10-year overview paints a broad picture, as the authors explain: "The
methodology used in the study involves a review of papers published from 2007 to 2017 that
utilized machine learning techniques for manufacturing fault diagnosis, focusing on artificial
neural networks (ANN), Bayesian networks (BN), support vector machine (SVM), and Hidden
Markov model (HMM) techniques"™ This 10-year analysis covers neural networks (ANN, BNs,
and HMMs) as well as SVMs, with an emphasis on summarizing the similarities and differences
in a retrospective context.
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The first type of machine learning technique they describe is an artificial neural network (ANN):
"[An] artificial neural network is a non-parametric machine learning algorithm inspired by the
functioning of the human central nervous system"[*. According to a paper by Lau et al.,®! the
main advantages of ANNs are that they can be used for various applications, such as "Pattern
recognitions [sic], classifications, forecasting, and prediction,” as well as "Extend [ing], the
capability of analyzing complicated amount of data that are not easily to be simplified through
the conventional statistical techniques, [and] implicitly detect [ing], non-linear relationships
between dependent and independent variables I, Lau's team here emphasizes that predictive
models that rely on neural networks excel at pattern recognition and identifying relationships that
would not otherwise be accessible through the Bayesian Networks and Hidden Markov models
that Ademujimi and his team mention in the same 2017 paper.

Filling the first literature gap: Unexplainable algorithms

These neural networks all fall short, however, in one significant way: "Most of the neural
networks remain black-box models, where the inner decision-making processes cannot be easily
understood by human beings. Without sufficient interpretability, their applications in specialized
domain areas such as medicine and finance can be largely limited"[® There is little explainability
as to what each node in the network is doing or deciding, especially if there are multiple layers of
nodes. It's very likely that multiple layers would be required to address something as rigorous
and complex as a risk classification for regulated industries, which causes them to be “largely
limited,” as Yang’s team mentions. This "Black-box" aspect of neural networks all but excludes
them from use in regulated industries, due to their process obfuscation and most importantly the
subsequent problems they would cause during audits.

The final algorithm type listed in the 10-year retrospective is a Support Vector Machine, or SVM
1. Similar to a K-Nearest Neighbor algorithm, SVMs can be used for classification and don't
suffer from the same explainability pitfall as neural networks. The main divergence in
methodology between SVMs and KNN algorithms comes in the granularity of classifications:
Whereas KNN algorithms can, by definition, identify k number of classes, SVMs can separate
only two binary classes. While it is possible to train multiple SVMs and achieve multiclass
classification results, this would decrease the level of explainability required for QMS audits.

It can be seen, then, that neural networks, while cutting-edge and effective for both pattern
recognition and classification, are essentially inaccessible for regulated industries. This is the
first way in which the present study fills a gap in the literature: KNN algorithms have not yet
been identified as a preferred method for regulated-industry use.

Filling the second literature gap: Myopic scope

There is significant literature regarding the application of machine learning algorithms to specific
manufacturing processes, such as the injection molding shots covered in Mueller et al. in 2018.
The team built a Linear Regression algorithm, and validated it through predictive validation,
event validation testing, and a two-sided t-test 'l The study's methodology centered around
monitoring sensors within a particular mold and analyzing the subsequent SPC control charts.
Mueller and his team applied machine learning principles to a real-life manufacturing problem,
and were successful in anticipating SPC measurements accurately using their Linear Regression
algorithm. Similar papers can be found using machine learning to predict roughness quality 1,
predict CNC efficiency 2% select and maintain tooling [***31 monitor machine health 214
improve productivity rates %1214 implement novel approaches in additive manufacturing ™%,
and even classify dielectric fluids in electron discharge machining (EDM) operations 1, There
are also several forward-looking papers regarding future developments in machine learning
applications for machine shops, such as Das (2021) and Rajesh et al., (2022) [6171 who discuss
algorithmic implementations of developing and controlling non-traditional machining processes.
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This plethora of papers on specific processes stands in stark contrast to the dearth of research
taking a gestalt view of manufacturing writ large, such as a company's supplier risk
classification.

Filling the third literature gap: Proof-of-concept Studies

Looking at a final machine learning study, from Baryannis et al., (2019) 8 it can be seen that
academia is analyzing SVMs vs. Decision Tree algorithms to classify risk—however, the part of
the team's analysis most relevant to the present paper doesn't come from the study's methodology
or their research question: It is the study's significance. "The novelty of the presented research
lies not in the employed algorithms which are well-established and whose choice is indicative,
but rather in the manner in which such technologies are to be integrated in an SCRM process”
(28] In much the same way, the point of this present paper is not an explanation of the algorithm
used, but draws its novelty from the particular application in combining quality and supply chain
metrics.

Methodology
Methodology 1: Synthetic data generation

To achieve a well-rounded risk management system, the variables chosen must support the
targeted metrics that are targeted within the study, as well as aligning with the industry’s
department needs. Within the scope of this study, the metrics are supplier performance in the
areas of quality and supply chain. These will not only provide a strong significance in the
academic aspect of the proposed algorithm, but also satisfy industry needs in both areas.

The starting point for variable selection was Urbaniak et al., who review the literature in their
2022 paper and gather relevant variables from past and current scholarship. Part of their table is
reproduced below, in a more concise format:

Table 1: Combined variable list from Urbaniak et al., 2022 and this author’s edits for the present study. Table
by author.

Variable List from Urbaniak et al., 2022 New Variable from Author
Quality defects of products % of NCMRs per total lots QA
Assortment mistakes in deliveries Delivery inaccuracy Supply Chain

Low level of environmental performance of

products

Threats to timely deliveries Failed OTD Supply Chain
Low level of employee qualifications Audit findings QA
Supplier's financial standing Financial obstacles Supply Chain
Low level of after-sales service Response delay (docs) QA

Low level of after-sales service - -

Limited production capacity Capacity limit Supply Chain

Low level of product innovation - -
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Lack of documentation (CoC,

Problem with product identification etc)

QA

Errors in the delivery documentation - -

Long order processing time - -

No emergency delivery plans - -

Technological problems - -

Unjustified raising prices for products Unjustified price increase Supply Chain

Low level of supplier involvement in joint
research and development

Maladjustment of information systems in
communication

Low level of supplier involvement to reducing

operating costs No cost reduction participation Supply Chain

Communication problems (SC) - -

Low level of delivery flexibility - -

Long response time to complaints - -

Number of employees - -

Implementation of QMS (yes/no) - -

Implementation of EMS (yes/no) - -

Implementation of H&SMS (yes/no) - -

Implementation of Toyota Production System
(Kaizen, 5S, TPM) (yes/no)

Capital (domestic/foreign) - -

Sector - -

For the present study, several variables were renamed, and others cut from the table to constrain
the scope to match this paper, focusing only on quality and supply chain metrics:

Table 2: Renamed and filtered variable list. Table by author

Variable List from Urbaniak et al., 2022 New Variable from Author
Quality defects of products % of NCMRs per total lots QA
Assortment mistakes in deliveries Delivery inaccuracy Supply Chain
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Threats to timely deliveries Failed OTD Supply Chain
Low level of employee qualifications Audit findings QA
Supplier's financial standing Financial obstacles Supply Chain
Low level of after-sales service Response delay (docs) QA
Limited production capacity Capacity limit Supply Chain
Problem with product identification Lack of documentation (CoC, etc.) QA
Unjustified raising prices for products Unjustified price increase Supply Chain
Low level of involvement to reduce op. costs No cost reduction participation Supply Chain

Data for each variable was created and placed into a DataFrame using Python’s Pandas library,
creating 350 rows. Synthetic data was used in the absence of confidential company data, which
was unavailable at the time of writing, due to NDAs and proprietary policies. Due to this, the
present study is a proof-of-concept rather than a real-world analysis.

This decision to use synthetic data conforms to academic best practices, as the data is
acknowledged to be synthetic and not collected in a statistical state of nature. For example, a
skew is intentionally introduced using the increase percentage variable as a multiplier to
artificially modify the significance of the various metrics as needed, such as increasing the risk
weight for failed supply chain metrics, including Shipment Inaccuracy, and Failed OTD.

First, a DataFrame was created using the filtered and renamed variables, based on Urbaniak et
al., 202221, The DataFrame’s distribution can be seen in the histogram below. Note that the
population mean of several of the variables, such as Failed OTD, are shifted up to ~100
instances, and are normally distributed around this new mean, within 1 standard deviation:

% of NCMA= par Totl Lois Ship=ant Inacouracy Falled OTD

Huidit Firdings Financial Dtstacka Riehpszirsis Dulay [Dhoe:

Capacly Limd

Capasty Lanl Labck of Descismmwiiladion (Cal, &lc ) Iejustifad Pice Nk

M Conll Rafuction Panaapalion

4 H H 0 (il Ho 16 ! x & = 5 0 Lr. o 1= b
He Cont Rsdudtion Pafapalion 1k Chisbcalion

Fig. 2: Histograms showing the distribution of total instances for each variable

Programmatically, this difference is introduced intentionally by using these parameters:
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df = pd.DataFrame ({
"% of NCMRs per Total Lots": [round/( * QA increase percentage)] *
4
"Shipment Inaccuracy": [round ( * SC_increase percentage)] * ;
"Failed OTD": [round/( * SC_increase percentage)] * ;
"Audit Findings": [round ( * QA increase percentage)] * 0
"Financial Obstacles": [round ( * SC_increase percentage)] * 0
"Response Delay (Docs)": [round/( * SC_increase percentage)] * 0
"Capacity Limit": [round ( * SC_increase percentage)] * ;
"Lack of Documentation (CoC, etc.)": [round ( &
QA increase percentage)] * p
"Unjustified Price Increase": [round( * SC _increase percentage)] *
4
"No Cost Reduction Participation": [round ( * SC_increase percentage) ]

14
"Risk Classification": [2]

})

# Generate random values for columns within 1 standard deviation

for col in df.columns:
base value = df[col].mean ()
std = base value *

df [col] =
)]

range (

[round (random.normalvariate (base value,

std)) for in

After generating 350 rows of synthetic data (within 1 standard deviation), all risk classification
values here are set at a default of 2 (Medium Risk), and will be modified with the following
code, in order to generate risk classifications for this "Existing" dataset. This code supplements
the existing data by assigning values in the Risk Classification column based on thresholds. This
is a continuation of the synthetic data generation process:

# Set thresholds for "existing"
high threshold NCMR =

high threshold shipment =
high threshold OTD =

high threshold audit =

high threshold finance =

high threshold response delay
high threshold capacity =
high threshold CoCs =

high threshold price increase =
high threshold cost reduction

# Risk Assignment #
for index,
high count =

Scinexis Journal of Medical Devices and Healthcare Innovation (SJMDHI)
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# Check each column and increment counter
for col in df.columns:

if row[col] >= high threshold NCMR and col == "$ of NCMRs per Total
Lots":
high count += 1
elif row[col] >= high threshold shipment and col == "Shipment
Inaccuracy":
high count += 1
elif row[col] >= high threshold OTD and col == "Failed OTD":
high count += 1
elif row[col] >= high threshold audit and col == "Audit Findings":
high count += 1
elif row[col] >= high threshold finance and col == "Financial
Obstacles":

high count += 1
elif row[col] >= high threshold response delay and col == "Response
Delay (Docs)":
high count += 1
elif row[col] >= high threshold capacity and col == "Capacity
Limit":
high count += 1
elif row[col] >= high threshold CoCs and col == "Lack of
Documentation (CoC, etc.)":
high count += 1
elif row[col] >= high threshold price increase and col == "Unjustified
Price Increase":
high count += 1
elif row[col] >= high threshold cost reduction and col == "No Cost
Reduction Participation":
high count += 1

# Assign risk based on counter value
if high count >= 8:

df.loc[index, "Risk Classification"] = 1 # 8 or more exceed
elif high count < 8 and high count >= 6:
df.loc[index, "Risk Classification"] = 1
elif high count < 6 and high count >= 4:
df.loc[index, "Risk Classification"] = 2
elif high count < 4 and high count >= 1:
df.loc[index, "Risk Classification"] = 3
else:
df.loc[index, "Risk Classification”"] = 3 # None exceed

This code creates a small histogram showing the distribution of risk classes, where 1 is Low, 2 is
Medium, and 3 is High:

200 —

150 —

Count

100 —

o T T T T T T
100 1.25 1.50 1.7S 2.00 225 250 275 300
Risk Classification

Fig. 3: Histogram showing the distribution of risk classifications: Low (1), Medium (2), and High (3).
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Methodology 2: Training a KNN model for risk classification

In order to classify the risk level of nonconforming materials, a KNN model was trained using
the prepared data. This model was trained using the scikit-learn Python library:

# Split the data into training and testing sets, 75/25, respectively
X train, X test, y train, y test = train test split (X, Y
test size=0.25, random state=42)

# Scale features using StandardScaler (on training set only)
scaler = StandardScaler ()

X train scaled = scaler.fit transform(X train)

X test scaled = scaler.transform(X test)

# KNN model with prediction and evaluation (using test set labels)
knn = KNeighborsClassifier (n neighbors=3)

knn.fit (X train scaled, y train)

y pred = knn.predict (X test scaled)

risk mapping = {3: "Low Risk", 2: "Medium Risk", 1: "High Risk"}
X["Risk Category"] = X["Risk Classification"].map (risk mapping)

This code splits and scales training and testing data, preparing it as input for the KNN
algorithm. The KNeighborsClassifier and KNN fit functions are called to create and train the
model. The final step is to evaluate the model’s performance by determining the precision, recall,
and the F1 scores:

accuracy = accuracy score(y test, y pred)

# Precision, Recall, Fl-score (macro and micro)

precision macro = precision score(y test, y pred, average='macro')
recall macro = recall score(y test, y pred, average='macro')
fl macro = fl score(y test, y pred, average='macro')

# Classification report
report = classification report(y test, y pred, output dict=True)

# Convert the classification report to a dataframe
evaluation df = pd.DataFrame (report) .transpose ()
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color palette = ['orange', 'green', 'red']
g = sns.pairplot (X, hue="Risk Category", palette=color palette,
plot kws={"alpha": 0.95})
for ax in g.axes.flat:
ax.set ylim (0, max value)
plt.show ()

Results
The following code creates a scatterplot graph for each possible variable interaction, outputting
the subsequent pairplot:

Fig 4: A pairplot showing scatterplot interactions of each unique variable

Discussion

The pairplot reveals several main threads that can be analyzed to both provide insight to
academia and support the needs of industry. This KNN model has two main goals: Specificity
and transparency.

The first goal is to provide information that is sufficiently specific to address the needs of the
quality and supply chain departments ’risk management initiatives. Company stakeholders can
examine the pairplot for an overview of what variable interactions cause a given risk level. For
example, the algorithm has classified higher values of some of the variables to be higher risk, as
can be seen from the Capacity Limit row: Values above ~110 (y-axis) are classified as high risk,
even when accounting for every other variable combination this suggests that the other variables
in the horizontal row of squares have little to no mitigating effect on how risky threats to
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Capacity Limit are. Another example can be seen in No Cost Reduction Participation: Values
above ~100 (x-axis) are classified as high risk, regardless of most other variables, evidenced by
that threshold’s relative stability across each square.

Finally, the KNN model built in this paper favors the big picture: It tilts toward simplicity and
utilizes straightforward mathematics as its mode of execution. This creates a clean, clear
algorithm that’s readily explainable during QMS audits. The algorithm is choosing the shortest
distance between two points at a time to evaluate which should be grouped together. The key
here is for the model to produce data and data visualizations, such as this pairplot, that are at the
same time actionable and general. For example, the information contained in the histograms in
Fig. 2 is re-presented here, where the plots for % NCMRs per Total Lots, Audit Findings, and
Lack of Documentation (CoCs, etc.) all have a squashed data band, due to their preset means,
distributions, and weights. This is just one way that the KNN output can be used as a helpful
visual for human decision-making.

Limitations

It is important to acknowledge the limitations of the proposed approach. Overall, it is important
to note that the purpose and scope of this paper is to create a proof-of-concept methodology and
algorithm, and further research is needed to validate its effectiveness in real-world manufacturing
settings.

Favoring the development of a broad proof-of-concept, the methodological approach does not
cover certain edge cases, such as suppliers that deliver only twice per year; in this case, a single
error affects half of their total performance for the entire year. These suppliers, as well as others
outside the scope of the paper, will need a specially-adapted process and analysis in order to
avoid positive or negative algorithmic bias. In addition to evaluating the supplier too charitably
or too harshly, the algorithm may risk overfitting due to the small sample size. Furthermore, the
present study does not address first-time supplier qualification, only requalification/re-
evaluation. Finally, the use of synthetic data rather than collected data poses certain limitations,
which need to be carefully considered when applying the approach to real-world data.
Nonetheless, this study's innovative approach and novel methodology offer significant benefits
for supplier risk management. This proof-of-concept points to significant avenues for future
research, especially in regulated manufacturing industries.

Future research opportunities

Oftentimes, one of the common ways that a study can be expanded upon for future research
involves increasing an algorithm’s complexity, or replacing it with a neural network. Due to the
auditing restrictions detailed above, however, future research will involve testing different
datasets, evaluating its performance, and fine-tuning its performance to new business and
manufacturing contexts. An additional broad avenue for a future study would be using this KNN
model for risk prediction in nonconforming materials or production processes.

Conclusion

The use of explainable Al models in the medical device manufacturing industry is a topic that’s
relevant to everyone, since humanity depends on medical devices for longevity and quality of
life. Although poorly covered in the current academic landscape, further research can yield
results that will push other, more well-covered, machine learning fields forward. For example,
the present study identified the limitations of the scholarly conversation around machine learning
algorithms, such as lack of explainability and myopic scope. This opened the door to a discussion
of algorithmic appropriateness and selection, which was found to be a missing piece of that
conversation.

In addition, ensuring algorithmic explainability will push all technology and all research forward,
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as both academia and industry and, in fact, humanity as a whole would benefit from more
transparent Al models. These innovations will shape our future and our relationship with
technology in some of our most vulnerable and human moments, such as on the operating
table. Academia in particular would benefit from a research context from a field with more
restrictions: Adding an additional layer of requirements will elicit innovation from both fields, as
Necessity is the mother of Invention.
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